Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma:
Encontrar la función f(x) de la cual derivada es conocida.
Dada la diferencial de la función df(x) encontrar la función f(x)
La función que se pide se le conoce como integral de la diferencial dada y al procedimiento utilizado para encontrar la integral se le conoce como integración. Al igual que el símbolo de derivada, el símbolo de integración, cuyo operador nos indicara la operación mencionada, ha tenido toda una evolución que fue acompañado de rasgos históricos hasta llegar a simbolo
Concretamente diremos que
aunque esta relación no es del todo general es correcta y nos será útil para incursionar el análisis de este concepto.
Así por ejemplo podemos tener f1(x)= 3x y con ello f1´(x)dx=3dx por lo que
pero podemos observar que si la función es f2(x)= 3x+5= f1(x)+5 entonces f2´(x)dx=3dx por lo que
podemos entonces pensar que en general pudimos agregar a f1(x) cualquier constante y tener el mismo diferencial por lo que una expresión mas general a considerar es la siguiente:
a la constante c que se agrega se le conoce como constante de integracion. A la expresión anterior se le conoce como integral indefinida.
Retomemos el ejemplo:
que sucede si aplicamos el operador de derivadas en ambos miembros de la expresión:
lo que hace pensar que al aplicar el operador de derivada al operador de Integración obtenemos la función a integrar. De forma mas general tendremos:
Como podemos observar el operador de derivada en una operador inverso al de integración, hemos concluido esto en base a la expresión anterior. Sin embargo, si el operador de integral antecede al símbolo de derivada la expresión no siempre será cierta, y en ocasiones, no siempre podremos obtener una solución.
No hay comentarios:
Publicar un comentario